Test-size Reduction Using Sparse Factor Analysis
نویسندگان
چکیده
Consider a large database of questions that test the knowledge of learners (e.g., students) about a range of different concepts. While the main goal of personalized learning is to obtain accurate estimates of each learner’s concept understanding, it is additionally desirable to reduce the number of questions to minimize each learner’s workload. In this paper, we propose a novel method to extract a small subset of questions (from a large question database) that still enables the accurate estimation of a learner’s concept understanding. Our method builds upon the SPARse Factor Analysis (SPARFA) framework and chooses a subset of questions that minimizes the entropy of the error in estimating the level of concept understanding. We approximate the underlying combinatorial optimization problem using a mixture of convex and greedy methods and demonstrate the efficacy of our approach on real educational data.
منابع مشابه
Test-size Reduction via Sparse Factor Analysis
In designing educational tests, instructors often have access to a question bank that contains a large number of questions that test knowledge on the concepts underlying a given course. In this setup, a natural way to design tests is to simply ask learners to respond to the entire set of available questions. This approach, however, is clearly not practical since it involves a significant time c...
متن کاملPosterior Contraction in Sparse Bayesian Factor Models for Massive Covariance
Sparse Bayesian factor models are routinely implemented for parsimonious dependence modeling and dimensionality reduction in highdimensional applications. We provide theoretical understanding of such Bayesian procedures in terms of posterior convergence rates in inferring high-dimensional covariance matrices where the dimension can be potentially larger than the sample size. Under relevant spar...
متن کاملImproving Sparse Representation-Based Classification Using Local Principal Component Analysis
Sparse representation-based classification (SRC), proposed by Wright et al., seeks the sparsest decomposition of a test sample over the dictionary of training samples, with classification to the most-contributing class. Because it assumes test samples can be written as linear combinations of their same-class training samples, the success of SRC depends on the size and representativeness of the ...
متن کاملTest-size Reduction for Concept Estimation
Consider a large database of questions that assess the knowledge of learners on a range of different concepts. In this paper, we study the problem of maximizing the estimation accuracy of each learner’s knowledge about a concept while minimizing the number of questions each learner must answer. We refer to this problem as test-size reduction (TeSR). Using the SPARse Factor Analysis (SPARFA) fra...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013